
Natural Language Engineering 15 (4): 459–477. c© Cambridge University Press 2009

doi:10.1017/S1351324909990118
459

Inferring textual entailment with

a probabilistically sound calculus∗

S T E F A N H A R M E L I N G
Max Planck Institute for Biological Cybernetics, Spemannstraße 38, 72076 Tuebingen, Germany

e-mail: stefan.harmeling@tuebingen.mpg.de

(Received 16 November 2007; revised 10 July 2008; accepted 6 February 2009)

Abstract

We introduce a system for textual entailment that is based on a probabilistic model of

entailment. The model is defined using a calculus of transformations on dependency trees,

which is characterized by the fact that derivations in that calculus preserve the truth only with

a certain probability. The calculus is successfully evaluated on the datasets of the PASCAL

Challenge on Recognizing Textual Entailment.

1 Introduction

Textual entailment recognition asks the question whether a piece of text like

The Cassini Spacecraft has taken images from July 22, 2006 that show rivers and lakes present

on Saturn’s moon Titan.

implies a hypothesis like

The Cassini Spacecraft reached Titan.

There exist many interesting approaches to this problem (see Dagan, Glickman and

Magnini 2005; Bar-Haim et al. 2006; Giampiccolo et al. 2007) for various recent

efforts. This paper will present a work that models the probability of entailment

in terms of ideas motivated by approaches like the edit distance (Kouylekov and

Magnini 2005, 2006; Adams 2006; Tatu et al. 2006; Bar-Haim et al. 2007; Iftene

and Balahur-Dobrescu 2007). However, instead of defining some distance based

on edits, we will generate derivations in some calculus that is able to transform

∗ This paper is an extended version of a workshop paper (Harmeling, ‘An extensible
probabilistic transformation-based approach to the third recognizing textual entailment
challenge’, in Proceedings of the ACL-PASCAL Workshop on Textual Entailment and
Paraphrasing, 2007, pp. 137–142).

The author is grateful for valuable discussions with Christopher K. Williams and Amos
Storkey. This research was supported by the EU-PASCAL network of excellence (IST- 2002-
506778) and a European Community Marie Curie Fellowship (MEIF-CT-2005-025578).
Furthermore, the author is thankful to the organizers of the RTE challenges and to the
creators of WordNet, NLTK-LITE and the Stanford Parser for sharing their software with
the scientific community.

460 S. Harmeling

dependency parse trees. The special property of our calculus is that the truth is

only preserved with a certain probability along its derivations. This might sound

like a disadvantage. However, in commonsense reasoning there is usually a lot of

uncertainty due to the fact that it is impossible to formalize all world knowledge. We

think that probabilities might help us in such situations in which it is impossible to

include everything into the model but in which nonetheless we want to do reasoning.

The main idea of this paper can be formulated as follows: Model the probability

of entailment as the maximally achievable probability of preserving the truth along

derivations in some probabilistically sound calculus.

Let us further explain this idea: we are considering calculi that can transform

given text into hypotheses. These mechanisms should be designed to preserve the

truth along their derivations. However, we believe that in practice such calculi will

always remain imperfect due to the difficulty of correctly formalizing commonsense

reasoning. Because of this we do not restrict ourselves to sound calculi but instead

consider probabilistically sound calculi. For such calculi we estimate the probability

of preserving the truth for each possible atomic transformation of the calculus.

This allows us to assign a probability to each derivation in the calculus simply

by multiplying all probabilities of preserving the truth along the derivation. In

theory, we can consider for given text/hypothesis pairs all possible derivations, each

having a certain probability of preserving the truth. If we can find a derivation

for a text/hypothesis pair that achieves a large probability of preserving the truth,

e.g. because it is short or because it only uses transformations that are known to

preserve the truth with high probability, it is reasonable to believe that the text

does imply the hypothesis; i.e. the text entails the hypothesis with large probability.

In most calculi we can usually also construct many valid derivations that could

be arbitrarily long and thus might only achieve arbitrarily small probabilities. To

ignore those other derivations, we propose to define the probability of entailment as

the maximally achievable probability of preserving the truth along some derivation

in some fixed calculus as will be detailed in the following.

2 Defining the probability of entailment

First of all, let us assume that the text and the hypothesis of a textual entailment

example are represented as dependency trees T and H . We would like to formalize

the probability that T entails H , more precisely the probability of the event that

T entails H . We denote this event by T |= H using the entailment relation. The

probabilities of such events are parameterized by a vector θ; i.e. each parameter

vector θ provides us probabilities pθ(T |=H) for all events of the form T |=H . In

order to define pθ(T |=H) we first introduce the probability of preserving truth along

syntactic derivations in some calculus which we introduce next.

Suppose we are given n transformations TF1, . . . ,TFn that are designed to modify

dependency trees. We call a tuple of such transformations a derivation, which

we denote by τ with length �(τ). Let τj count the number of times TFj appears

in τ. Furthermore, let τ(T) be the result of applying the transformations in τ

to some dependency tree T ; e.g. for τ = (TF3,TF3,TF17) with �(τ) = 3 we have

Inferring textual entailment with a probabilistically sound calculus 461

τ(T) = TF17(TF3(TF3(T))). For a derivation τ with τ(T) = H we denote by T �τH

the event that the derivation τ preserves the truth. Thus τ(T) = H does not always

imply T �τH . Next we will model the probability of that event.

For each given transformation TFj , the probability of preserving truth is modelled

as a constant value θj independent of the dependency tree T it is applied to, i.e.

pθ(T �TFj
TFj(T)) = θj for all T , (1)

with parameter θ being the vector of all θj . The idea is that applying a transformation

to T could also create a dependency tree that is sometimes not entailed by T

anymore. Consider e.g. the transformation that extracts an appositive and adds a

new sentence for it. Usually this is correct, but there are situations in which the

appositive appears inside a quote, where it might lead to a wrong conclusion. Thus

it makes sense to consider probabilities to deal with imperfect calculi.

Suppose that a derivation τ = (t1, . . . , t�(τ)) derives H from T , i.e. τ(T) = H . Then

we define the probability of preserving the truth along the derivation τ, i.e. of the

event T �τH , as the product of the preservation probabilities of the transformations

involved:

pθ(T �τH) =

�(τ)−1∏
i=1

pθ(Ti �tiTi+1) =

n∏
j=1

θ
τj
j (2)

with T1 = T , Ti+1 = ti(Ti) and T�(τ) = H . Note that even though for a certain

dependency tree T applying different derivations τ and σ can result in the same tree,

i.e. τ(T) = σ(T), their probabilities of preserving truth can be different, since the

probabilities depend on the transformations applied. With other words the events

T �τH and T �σ H are different events if τ �= σ and thus get usually different

probabilities assigned. For example consider a derivation that performs unnecessary

steps. Even though it reaches the same result as a more succinct derivation, its

probability of preserving truth can be expected to be smaller. In other words, the

probability of preserving the truth is a property of a derivation and not a property

of a pair of dependency trees.

In the previous paragraphs we have defined probabilities of preserving truth for all

finite-length derivations in the calculus. This allows us now to define the probability

of T |=H to be the maximal probability over all possible derivations,

pθ(T |=H) = max
τ:τ(T)=H

pθ(T �τH) = max
τ:τ(T)=H

n∏
j=1

θ
τj
j . (3)

In other words, the probability of entailment is the largest achievable probability of

preserving the truth along all possible derivations.1

1 As one of the reviewers pointed out we could alternatively define the probability of
entailment as the probability of the event that there exists a derivation τ that does preserve
the truth, i.e. pθ(T |=H) = pθ(∃τ : T �τH). However, for two derivations τ1 and τ2 the two
events T �τ1H and T �τ2H are in general not independent. Thus we do not see an easy
way to evaluate these probabilities in practice, and we follow a different route.

462 S. Harmeling

In the following we introduce a set of transformations that is able to transform

any text into any hypothesis, and we will propose a heuristic that generates such

derivations.

3 Heuristically generating derivations

After explaining the preprocessing and parsing steps, we will describe the set of

transformations and our heuristic to generate derivations in the induced calculus.

Then we explain how to learn the parameters of our model and how to employ

them to classify unseen test examples. Finally, we point out a connection between

our procedure and logistic regression which will be applied for comparison to the

feature vectors computed by our calculus.

3.1 Preprocessing and parsing

For preprocessing we apply the following steps to the text string and the hypothesis

string:

(1) Remove white space, dots and quotation marks at beginning and end.

(2) Remove trailing points of abbreviations.

(3) Remove space between names, e.g. ‘Pat Smith’ becomes ‘PatSmith’.

(4) Unify numbers, e.g. resolve ‘million’.

(5) Unify dates, e.g. ‘5 June’ becomes ‘June 5’.

We then split the text string into sentences simply by splitting at all locations con-

taining a dot followed by a space. The resulting strings are fed to the Stanford Parser

(Klein and Manning 2003; de Marneffe, MacCartney and Manning 2006) with its

included pretrained model and options ‘-retainTmpSubcategories’ and ‘-splitTMP 1’.

This allows us to generate dependency trees the nodes of which contain a single

stemmed word, its part-of-speech tag and its dependency tag (as produced using the

parser’s output options ‘wordsAndTags’ and ‘typedDependencies’; see de Marneffe

et al. 2006). For the stemming we apply the function ‘morphy’ of the NLTK-LITE

toolbox (Bird 2005). If the text string contains more than one sentence, they will be

combined into a single dependency tree with a common root node. Let us from now

on refer to the dependency trees of text and hypothesis by T and H .

3.2 Generating derivations

The heuristic described in the following generates a derivation that transforms T

into H . For brevity we will use in the text the abbreviations of the transformations

as listed in Table 1.

(1) Resolve appositives and relative clauses. All derivations for some T and H start

by converting all existing appositives and relative clauses in T to new sentences that

are added to T . For each appositive or relative clause that was resolved in this step,

the applied transformation, ATS or RTS, is appended to τ. For instance for the

sentence ‘Alice, the sister of Bob, likes hiking’ the transformation ATS will generate

Inferring textual entailment with a probabilistically sound calculus 463

Table 1. All transformations with their abbreviations.

1 SS substitute synonym

2 SN substitute number

3 SNE substitute named entity

4 SI substitute identity

5 SHE substitute hypernym

6 SHO substitute hyponym

7 SC substitute currency

8 SP substitute pronoun

9 GTC grammar tag change

10 CP change prep

11 SA substitute antonym

12 DOS del other sents

13 RUP remove unclamped parts

14 RUN remove unclamped negs

15 RUNO remove unclamped negs oddity

16 MCU move clamped up

17 RRN restructure remove noun

18 RAN restructure add noun

19 RRV restructure remove verb

20 RAV restructure add verb

21 RPD restructure pos depth

22 RND restructure neg depth

23 RHNC restructure h neg count

24 RHNO restructure h neg oddity

25 ATP active to passive

26 PTA passive to active

27 ATS appos to sent

28 RTS rcmod to sent

the sentences ‘Alice likes hiking’, ‘The sister of Bob likes hiking’ and ‘Alice is the

sister of Bob’.

(2) Calculate how H can clamp to T . Often there are several possibilities to assign

all or some of the words in H to words in T . For simplicity our system currently

ignores certain grammatical parts which are auxiliaries (‘aux’), determiners (‘det’),

prepositions (‘prep’) and possessives (‘poss’). Furthermore, we currently ignore words

of those parts of speech (POS) that are not verbs (‘VB’), nouns (‘NN’), adjectives

(‘JJ’), adverbs (‘RB’), pronouns (‘PR’), cardinals (‘CD’) or dollar signs (‘$’). For all

other words wH in H and words wT in T we calculate whether wT can be substituted

by wH . For this we employ amongst simple heuristics also WordNet 2.1 (Fellbaum

1998) as described next:

(i) Are the tokens and POS tags of wT and wH identical? If yes, return (1,

‘identity’).

(ii) If the POS tags of wT and wH indicate that both words appear in WordNet

continue with (iii), otherwise with (viii).

(iii) Are they antonyms in WordNet? If yes, return (2, ‘antonym’).

(iv) Are they synonyms in WordNet? If yes, return (2, ‘synonym’).

464 S. Harmeling

(v) Does wH appear in the hypernym hierarchy of wT in WordNet? If yes, return

(z, ‘hyponym’) with z being the distance; i.e. wT is a hyponym of wH .

(vi) Does wT appear in the hypernym hierarchy of wH in WordNet? If yes, return

(z, ‘hypernym’) with z being the distance; i.e. wT is a hypernym of wH

(vii) Are they named entities that share certain parts of their strings? If yes, return

(z, ‘named entity’) with z being larger dependent on how different they are.

(viii) Is wT a pronoun and wH a noun? If yes, return (2, ‘pronoun’).

(ix) Are wT and wH exactly matching cardinals? If yes, return (1, ‘number’).

(x) Are wT and wH identical currencies? If yes, return (1, ‘currency’).

(xi) Are wT and wH both currencies? If yes, return (2, ‘currency’).

Note that along the hierarchy in WordNet we also look one step along the ‘derived

form’ pointer to allow a noun like ‘winner’ to be substitutable by the verb ‘win’.

If a word wT is substitutable by a word wH , we say that wT and wH are clamped.

We call the whole assignment that assigns some or all words of H to words in T

a clamp. Since usually a single word wH is clamped to several words in T , we will

often have several different clamps. For example if H has three words each of which

is clamped to four words in T there are five possibilities for each of the three words:

either clamp one of the four possible words in T or omit the clamp. Thus we obtain

5 ·5 ·5 clamps in total (including the completely empty clamp), i.e. 125 possible ways

to clamp the words in H to words in T .

Each of these different clamps gives rise to a different derivation. Thus for lengthy

text/hypothesis the number of possible clamps explodes exponentially, posing a

serious search problem. For now, we have circumvented this problem by limiting the

possible number of clamps considered. Let us for simplicity continue to focus on a

single clamp and see how to complete a single derivation τ.

(3) Substitute the clamped words. If wH and wT are clamped, we know what their

relationship is; e.g. (3, hypernym) means that we have to go three steps up wH ’s

hypernym hierarchy in WordNet to reach wT . Thus we have to apply three times

the transformation SHE to substitute wT by wH , which we reflect in τ by appending

three times SHE to it. Similarly, we add other transformations (which could be SS,

SN, SNE, SI, SHO, SC, SP, SA) for other relations. Additionally, the substitution

of wT with wH might also trigger other transformations, such as PTA, ATP, CP

and GTC, which try to adjust the surrounding grammatical structure. All applied

transformations will be appended to the derivation τ.

(4) Pick the sentence with the most clamps. After substituting all clamped words, we

simply pick the sentence in T with the most clamped words and delete the others

using DOS. For example if T consists of three sentences, after this step T will only

contain the single sentence with the most clamps and DOS will be appended twice

to τ.

(5) Remove subtrees that do not contain clamped nodes. After this step we add

for each removed node the transformation RUP to τ. Then we add RUN for each

removed negation modifier (‘neg’) and additionally RUNO if the number of removed

negation is odd. RUNO is a somewhat artificial transformation and acts more like

Inferring textual entailment with a probabilistically sound calculus 465

a flag. This might be changed in future sets of transformation to better comply with

the transformation metaphor.

(6) Move the clamped nodes closer to the root and remove unclamped subtree. Again

we do some counting before and after this step, which determines the transformations

to add to τ. In particular we count how many verbs are passed by moving clamped

nodes up. For each passed verb we add MCU to τ.

(7) Restructure and add the missing pieces. The definition in (3) requires that any

T can be transformed into any H; otherwise the maximum is undefined. In the last

step we will thus remove all words in T which are not needed for H and add all

missing words to T and restructure until T becomes H . For the bookkeeping we

count the number of nouns, verbs and negation modifiers that have to be added

and removed. Furthermore, we count how many levels up or down we need to move

words in T such that they match the structure in H . For all these countings we

add accordingly as many transformations, RRN, RRV, RAN, RAV, RPD, RND,

RHNC, RHNO (see Table 1 for short explanations). In other words, we measure

how different T and H are after step (6). In practice the latter transformations are

not really executed, but we simply count how often we would have to apply them.

Finally, the completed derivation τ with τ(T) = H is converted to a n-dimensional

feature vector [τ1, . . . , τn]
� with τj being (as defined in Section 2) the number of times

the jth transformation from Table 1 appears in τ. As a simple example consider the

text

Kiwis, who are chased by opossums, eat small invertebrates, seeds, grubs, and many varieties

of worms.

and the hypothesis

Opossums chase birds.

The derivation of the dependency tree H of the hypothesis from the dependency

tree T of the text is illustrated in Figure 1 and explained in the following: In step (1)

the relative clause ‘who are chased by opossums’ is converted into a new sentence

using ‘Kiwis’ as the subject by transformation RTS (‘rcmod to sent’). Step (2)

finds possible clamps between text and hypothesis. A possible clamp is that ‘Kiwis’

matches hypernym ‘birds’ and that ‘chase’ and ‘opossum’ in the newly added sentence

in T matches ‘chase’ and ‘opossum’ in the hypothesis. Next in step (3) we substitute

the clamped ‘Kiwis’ by its hypernym ‘birds’ by transformation SHE (‘substitute

hypernym’). Also we change passive to active in that newly added sentence by

transformation PTA (‘passive to active’). Step (4) picks the newly added sentence,

since it has the most clamps, and removes the other sentence by transformation

DOS (‘delete other sentences’). Steps (5) through (7) do nothing in this example,

since we already reached the hypothesis in step (4).

Note that this example generates a single derivation. Since in step (2) there are

other clamps possible, our heuristic generates also derivations for each of the other

clamps. However, wrong clamps lead of course to more complicated derivations.

More concretely, they would require much more restructuring in steps (5)–(7). In

466 S. Harmeling

Fig. 1. Toy example derivation: the text is ‘Kiwis, who are chased by opossums, eat

small invertebrates, seeds, grubs, and many varieties of worms’ and the hypothesis is

‘Opossums chase birds’. The length-four derivation τ = (SHE, RTS, PTA, DOS) transforms

the dependency tree T into H .

practice we limit the maximal number of clamps in step (2) which can become very

large for longer texts and hypothesis.

One further caveat is as follows: the just presented heuristic to find derivations

and the set of considered transformations is by no means designed to be optimal.

Instead it should be merely seen as a vehicle to present a concrete worked-out

example of our probabilistic approach. See Section 5 for more thoughts on this.

3.3 Estimating the parameters

Let Dtr = {(T1, H1, y1), . . . , (Tm,Hm, ym)} be the m training examples with yi ∈ {0, 1}
indicating entailment. For brevity we define

fi(θ) = pθ(Ti |=Hi) (4)

to abbreviate the probability of entailment modelled as outlined in Section 2. Then

the data likelihood can be written as

pθ(Dtr) =

m∏
i=1

fi(θ)
yi (1−fi(θ))

(1−yi) (5)

Inferring textual entailment with a probabilistically sound calculus 467

We would like to maximize pθ(Dtr) with respect to the vector θ. However, this

optimization is difficult to perform, since each fi is a maximum over all possible

derivations from Ti to Hi (see (3)). In order to approximate it we choose the following

way:

(i) Generate for each example pair several derivations (as described in the previous

section), and choose the d shortest ones for some fixed number d. We choose

d = 8 in the experiments. For pairs which do not induce d different derivations,

simply copy the shortest derivations of the existing ones to get d derivations

(some of which will in that case be identical). The reason for this is to ensure

equal influence of each training example.

(ii) There are now d · m derivations in total. We denote the corresponding feature

vectors by x1, . . . , xd·m. Note that xi is a vector containing the countings of

the different transformations. For example if the corresponding derivation is

τ, then xij = τj .

(iii) Similarly copy the training labels yi to match those d · m feature vectors;

i.e. now our data becomes Dtr = {(x1, y1), . . . , (xd·m, yd·m)}.
(vi) Replacing fi(θ) by

gi(θ) =

n∏
j=1

θ
xij
j (6)

the data likelihood becomes

pθ(Dtr) =

d·m∏
i=1

gi(θ)
yi (1−gi(θ))

(1−yi) (7)

(v) Replace furthermore each θj by

σ(zj) =
1

1 + exp(−zj)
(8)

with σ being the sigmoidal function, which ensures that the values for θj stay

between zero and one.

(vi) Maximize pz(Dtr) in terms of z = [z1, . . . , zn]
� using gradient ascent.

(vii) Calculate θj = σ(zj) for all j.

Note that each text/hypothesis pair (Ti,Hi) generates d = 8 data points xd·(i−1)+1,

. . . , xd·i. On the other hand, our definition of the entailment probability (see (3))

suggests that only the single shortest derivation as a training case should be used.

This is of course the preferred procedure if there are enough training pairs available.

However, in our experiments with only a few hundred training pairs, we found out

that taking the d = 8 shortest derivations provides valuable data that improves

the overall performance. Also our definition suggests that the derivation which is

shortest with respect to the current parameter setting should be used. This implies

some alternating scheme: Initialize θ randomly or somewhat informed (e.g. by a first

run). Then use θ to find the shortest derivation with respect to the current parameter

setting θ and repeat until convergence of θ. We tried such an alternating scheme and

observed inferior performance; thus we used the simpler approach outlined above.

468 S. Harmeling

3.4 Classifying the test data

Having estimated the parameter vector θ we can apply the trained model to the

test data Dte to infer its unknown labels. Since we only generate some derivations

and cannot try all possible – as would be required by (3) – we again transform the

test data into d · n feature vectors x1, . . . , xd·n, hereby assuming that we have n test

examples. Note that xd·(i−1)+1, . . . , xd·i are the d generated feature vectors belonging

to the ith test example (Ti,Hi). To approximate the probability of entailment we

take the maximum over the d feature vectors assigned to each test example; e.g. for

(Ti,Hi), this becomes

pθ(Ti |=Hi) ≈ max
k∈{d·(i−1)+1,...,d·i}

n∏
j=1

θ
xkj
j . (9)

The class label and the answer to the question whether Ti entails Hi is obtained by

checking whether pθ(Ti |=Hi) is greater than or equal to 0.5. Note that since we can

only consider some derivations and not all of them, our approximation provides a

lower bound on the probability of entailment as defined in (3).

This completes the description of the system based on a probabilistically sound

calculus.

3.5 Logistic regression

Taking the logarithm of (3), we obtain

log pθ(T |=H) = max
τ:τ(T)=H

n∑
j=1

τj log θj . (10)

We see that the log-probability of entailment for each pair can be calculated by an

inner product between the feature vector and the component-wise logarithm of θ.

Note that log θj is always negative (since θj ≤ 1). If we omit this restriction and

replace log θj by a real-valued weight wj , we are no longer guaranteed that that

the inner product of the feature vector τ and w is a log-probability. However, after

applying the sigmoidal function (see (8)), we obtain a number between zero and one

which can be directly interpreted as a probability:

pw(T |=H) = max
τ:τ(T)=H

σ

⎛
⎝

n∑
j=1

τjwj

⎞
⎠ (11)

Ignoring the maximum, this model is exactly the logistic regression model, for which

we have just shown that it is closely related to our model.2

4 Evaluating the method

We will compare the results of the probabilistic calculus with logistic regression on

the feature vectors generated by the heuristic. Also for logistic regression we use

2 We also tried regularized logistic regression and support vector machines (Schölkopf and
Smola 2001) (setting hyperparameters by cross-validation) but didn’t see a performance
increase compared to unregularized logistic regression.

Inferring textual entailment with a probabilistically sound calculus 469

Table 2. Results of the RTE2 data. Shown are the accuracies on the training and test

sets. Results marked with ‘PC’ show performance for the probabilistic calculus and

results marked with ‘LR’ for logistic regression. The boldface numbers are accuracies;

the normal-font numbers are average-precision scores.

Overall IR SUM IE QA

RTE 2 (training)

PC Accuracy 62.50 59.50 75.00 57.00 58.50

Average precision 65.51 58.54 75.55 57.96 59.92

LR Accuracy 61.62 56.50 77.50 53.00 59.50

Average precision 64.62 57.20 77.40 53.40 60.58

RTE 2 (test)

PC Accuracy 55.64 55.00 62.50 52.00 53.03

Average precision 56.62 55.07 64.49 48.78 50.28

LR Accuracy 56.39 54.50 64.50 49.50 57.07

Averaeg precision 58.19 54.05 66.64 46.02 57.37

Table 3. Results of the RTE3 data. Shown are the accuracies on the training and test

sets. Results marked with ‘PC’ show performance for the probabilistic calculus and

results marked with ‘LR’ for logistic regression. The boldface numbers are accuracies;

the normal-font numbers are average-precision scores.

Overall IR SUM IE QA

RTE 3 (training)

PC Accuracy 62.12 58.50 64.00 57.50 68.50

Average precision 63.12 59.85 64.98 56.83 67.07

LR Accuracy 61.50 61.50 61.50 55.50 67.50

Average precision 61.50 64.69 61.69 53.28 64.22

RTE 3 (test)

PC Accuracy 57.50 59.50 57.00 51.00 62.50

Average precision 59.44 62.52 57.87 50.97 61.95

LR Accuracy 57.88 60.00 54.50 53.00 64.00

Average precision 59.98 64.14 54.89 53.76 63.48

the approximation for the maximum in (11) analogous to (9). We will see that we

have comparable performance. However, as we will discuss in Section 4.3, the weight

vector of logistic regression has a different interpretation than the model parameters

of the probabilistic calculus.

4.1 RTE2 and RTE3

Tables 2 and 3 show the performance of the probabilistic calculus and logistic

regression on the datasets from the second and third PASCAL Challenge on

Recognizing Textual Entailment (see Bar-Haim et al. 2006; Giampiccolo et al.

2007). Shown are the accuracies (in boldface) and the average precision (in normal

font) for probabilistic calculus and logistic regression overall and distinguished for

the different subtasks. The first fact we see from the results is that the probabilistic

470 S. Harmeling

0.5 0.6 0.7 0.8

0.5

0.6

0.7

0.8

0.9

(a) (b)

Accuracy

A
ve

ra
g

e
 p

re
ci

si
o

n

RTE2

PC
LR

0.5 0.6 0.7 0.8

0.5

0.6

0.7

0.8

0.9

Accuracy
A

ve
ra

g
e

 p
re

ci
si

o
n

RTE3

PC
LR

Fig. 2. Comparison against the test performance of all other (a) RTE2 and (b) RTE3

submissions. Each cross and each circle (results without precision) corresponds to one

submission to these challenges. Lower left is bad; upper right is good.

calculus system is better than random. However, with 55.64% (RTE2) and 57.50%

(RTE3) it is not much better. Applying logistic regression to the same feature vectors

leads to similar results, which shows that the feature vectors give some hint about

entailment but are clearly not yet sufficient, with accuracies 56.39% (RTE3) and

57.88% (RTE3).

Examining the task-specific data, we see that our features completely fail for the

information extraction (IE) subtask. However, we obtain good results, well above

60% in some of the subtasks. We also note that the accuracies of the training data

are much better than the accuracies of the test data, which indicates that there was

possibly some overfitting.

Comparing the task-specific results between the RTE2 and RTE3 datasets, it is

curious that in RTE2 the summarization (SUM) task was the easiest, while in RTE3

it was the question answering (QA) task. This is probably due to changes in the

data generation process.

To compare the performance of our system with the current state-of-the-art

systems we present in Figure 2 the results of all submissions to the RTE2 and RTE3

challenge (see Bar-Haim et al. 2006; Giampiccolo et al. 2007). Trained and evaluated

on the RTE2 data, our method performs better than some of the approaches, but

worse than most methods. Trained and evaluated on the RTE3 data, our method

shows below the current state-of-the-art performance. Overall, it seems that the

RTE3 data was somewhat simpler to deal with than the RTE2 data.

What are the possible reasons that our system did not compete well against the

other approaches? We believe that the basic idea of our system to define probabilities

of entailments in terms of derivations in some probabilistically sound calculus is

a promising approach to the textual entailment problem. However, the current set

Inferring textual entailment with a probabilistically sound calculus 471

Table 4. Results of the short examples of the RTE3 data. Shown are the accuracies

on the training and test sets. Results marked with ‘PC’ show performance for the

probabilistic calculus, results marked with ‘LR’ for logistic regression. The boldface

numbers are accuracies; the normal-font numbers are average-precision scores.

Overall IR SUM IE QA

RTE 3 short (training)

PC Accuracy 61.35 63.69 62.30 54.07 66.01

Average precision 62.79 66.72 63.88 51.09 63.53

LR Accuracy 62.71 68.15 61.20 53.49 69.28

Average precision 64.48 72.39 63.35 51.21 66.69

RTE 3 short (test)

PC Accuracy 59.30 59.59 59.16 51.38 67.88

Average precision 61.43 61.26 60.31 48.67 69.30

LR Accuracy 59.44 62.33 54.45 55.80 66.67

Average precision 61.54 63.68 54.00 57.19 67.98

Table 5. Results of the long examples of the RTE3 data. Shown are the accuracies

on the training and test sets. Results marked with ‘PC’ show performance for the

probabilistic calculus, results marked with ‘LR’ for logistic regression. The boldface

numbers are accuracies; the normal-font numbers are average-precision scores.

Overall IR SUM IE QA

RTE 3 long (training)

PC Accuracy 69.63 65.12 70.59 64.29 76.60

Average precision 66.05 64.38 52.72 56.92 72.37

LR Accuracy 74.07 65.12 82.35 67.86 82.98

Average precision 72.41 67.42 88.08 67.84 78.06

RTE 3 long (test)

PC Accuracy 55.56 51.85 55.56 47.37 65.71

Average precision 58.11 58.75 73.11 61.41 56.17

LR Accuracy 52.14 50.00 44.44 36.84 65.71

Average precision 54.46 56.08 48.33 38.78 54.33

of transformations as presented in this paper is too simplistic compared to the

processing done by other methods that performed very well in the RTE3 challenge

(such as Hickl and Bensley 2007; Tatu and Moldovan 2007) . As was also suggested

by one of the reviewers, we believe that our performance could be improved by a

better calculus that takes into account and implements the latest findings in linguistic

semantics.

4.2 Long versus short

The RTE3 data had some examples which contained an especially long text part.

Tables 4 and 5 allow us to examine our system with respect to longer or shorter

texts. For this we trained our model either only on the short examples (see Table 4)

or only on the long examples (see Table 5). Comparing the results we see that our

472 S. Harmeling

Table 6. The weight vectors for the probabilistic calculus (PC) and logistic

regression (LR). See the text for discussion.

PC LR

j θj No. used wj No. used

1 SS substitute synonym 0.88 60 −0.26 64

2 SN substitute number 0.50 0 0.00 0

3 SNE substitute named entity 1.00 1426 0.01 1554

4 SI substitute identity 0.98 132 −0.08 126

5 SHE substitute hypernym 0.97 652 −0.11 636

6 SHO substitute hyponym 0.96 1095 −0.13 1062

7 SC substitute currency 0.50 0 0.00 0

8 SP substitute pronoun 0 8 −3.39 8

9 GTC grammar tag change 1.00 1515 0.16 1616

10 CP change prep 1.00 101 0.28 107

11 SA substitute antonym 1.00 26 −0.01 20

12 DOS del other sents 1.00 1414 0.20 1414

13 RUP remove unclamped parts 0.99 10281 0.01 10749

14 RUN remove unclamped negs 0.90 29 −0.33 32

15 RUNO remove unclamped negs oddity 1.00 29 0.15 32

16 MCU move clamped up 0.96 480 −0.14 496

17 RRN restructure remove noun 0.50 0 0.00 0

18 RAN restructure add noun 0.79 854 −0.40 866

19 RRV restructure remove verb 0.50 0 0.00 0

20 RAV restructure add verb 0.90 569 −0.16 596

21 RPD restructure pos depth 1.00 1244 0.10 1350

22 RND restructure neg depth 0.97 575 −0.00 618

23 RHNC restructure h neg count 0.83 5 −0.29 5

24 RHNO restructure h neg oddity 0.83 5 −0.29 5

25 ATP active to passive 1.00 5 0.88 8

26 PTA passive to active 1.00 16 1.10 19

27 ATS appos to sent 1.00 380 −0.34 380

28 RTS rcmod to sent 0.98 329 −0.11 329

approach had especially problems with the longer texts. On the other hand it did

particularly well on the short examples (almost 60% accuracy).

Of course, these estimates of the accuracies are not precise due to small dataset

size. (Tables 9 and 10 list the number of data points corresponding to the entries in

the other tables.)

4.3 Interpreting the model parameters

Even though the performance of our system is not yet competitive with the state-of-

the-art textual entailment systems, the model parameters are interesting to analyze.

Of course, due to the small size of the dataset the parameters are only coarsely estim-

ated. Thus the following discussion should be taken with a grain of salt. Nonetheless

we believe that it is illustrating how the model parameters can be interpreted.

Table 6 contains all possible transformations of the calculus we used in this paper.

In the last columns we list the model parameters θj for the probabilistic calculus and

Inferring textual entailment with a probabilistically sound calculus 473

Table 7. Number of training (Tr) and testing (Te) points overall and for the different

subtasks in the RTE2 data. Note that two examples were excluded, since the applied

parser was not able to produce any parse tree for those.

RTE 2 Overall IR SUM IE QA

No. of Tr 800 200 200 200 200

No. of Te 798 200 200 200 198

Table 8. Number of training (Tr) and testing (Te) points overall and for the

different subtasks in the RTE3 data.

RTE 3 Overall IR SUM IE QA

No. of Tr 800 200 200 200 200

No. of Te 800 200 200 200 200

Table 9. Number of training (Tr) and testing (Te) points overall and for the

different subtasks in the RTE3 data that were declared to have short text.

RTE 3 Overall IR SUM IE QA

No. of Tr 665 157 183 172 153

No. of Te 683 146 191 181 165

Table 10. Number of training (Tr) and testing (Te) points overall and for the

different subtasks in the RTE3 data that were declared to have long text.

RTE 3 Overall IR SUM IE QA

No. of Tr 135 43 17 28 47

No. of Te 117 54 9 19 35

the weight parameters wj for the logistic regression that were estimated using the

RTE3 data. Additionally we list how often that particular derivation was used in

the derivation of examples of the RTE3 dataset. Note that the two ‘usage’ columns

slightly differ for probabilistic calculus and logistic regression, since when approx-

imating the maxima in (9) and (11) different derivations might have been chosen.

First of all note that for derivations that were never used, the model parameter

θj is 0.5 and wj is zero. This corresponds to the initialization of the optimization

procedures.

In the case in which θj = 1.0 we learn about the corresponding transformation

that its application to the text does not change its truth value. This is reasonable

for changing active to passive (ATP), but not so much for changing a preposition

(CP). The reason that also θ25 is 1.0 is probably that this transformation appeared

474 S. Harmeling

in derivations of entailed and also of not-entailed examples. Thus observing the

application of CP does not tell us anything about the final outcome.

The difference between the model parameters of probabilistic calculus and logistic

regression is that the values of θj can only decrease the likelihood of entailment,

since θj ≤ 1, while wj (corresponding to the logarithm of θj) can be positive as

well, which means that applying ATP with w25 = 0.88 > 0 (and so logw25 > 1) is

increasing the probability of entailment. Of course in the calculus that does not make

sense, since each application of a transformation can only lower the probability of

entailment. Thus if by chance all passive-to-active (PTA) transformations appear

only in derivations of some entailed examples and never in non-entailed examples,

the logistic regression model will assign a positive weight. On the other hand in the

probabilistic calculus model the corresponding model parameter will be 1.0. This is

also the reason for the fact that for almost all transformation for which wj > 0, we

have θj = 1.0.

5 Related work

Already Glickman, Dagan and Koppel (2005) have proposed a probabilistic ap-

proach for textual entailment. Their idea is to assume a generative model for

texts and possible worlds, which assign probabilities to all possible hypotheses.

Such a model lets us define that text T entails hypothesis H if and only if

p(“H is true”|T) > p(“H is true”), i.e. if and only if knowing the text increases

the probability of the hypothesis to be true. In practice it is hard to estimate such

generative models, and thus in their paper they apply this idea to the subtask

of lexical entailment. Nonetheless it is interesting how their generative approach

conceptually compares to ours. Informally, (1) can be informally rewritten as

p(“TFj(T) is true”|“T is true”) = θj (12)

The main difference from Glickman et al. (2005) is that we do not need a generative

model of the text. Instead our model simplifies the situation by assuming the

probability of preserving the truth to depend only on the transformation TFj and

not on the text T to be transformed. The entailment relation between T and H

is captured by possible derivations, each of which has a certain probability of

preserving the truth. Thus instead of employing a generative model we model the

relationship between T and H . The relationship between the work of Glickman

et al. (2005) and our work is remotely similar to the difference between generative

and discriminative models for classification problems.

Our work shares also ideas with those of Bar-Haim et al. (2007a, 2007b) who

propose to infer semantic entailment at the lexical–syntactic level. In other words,

instead of performing inference in some logical representation, they define a calculus

that acts directly on parse trees. Our paper is very much in agreement with their

view on this and similarly suggests a calculus on the lexical–syntactic level. (We

tried for example transforming dependency trees.) However, while their work puts

the focus on the construction of powerful, theoretically grounded rules, our paper

puts its emphasis on the idea to probabilistically define the soundness of such rules

Inferring textual entailment with a probabilistically sound calculus 475

and to formalize textual entailment in a probabilistic way. We strongly believe that

combining their set of syntactic transformations with our probabilistic approach

(herewith replacing their approximate matching) would lead to promising results.

Also related to our work is that of Iftene and Balahur-Dobrescu (2007) which

proposes a transformation-based approach to textual entailment as well, but non-

probabilistically. Instead of only transforming the text to reach the hypothesis, as our

approach does, they transform the text and the hypothesis until they meet or their

remaining edit distance is small. Combining forward search with backward search is

probably an efficient way to find good derivations from the text to the hypothesis.

This idea and also their set of transformation is in principle also compatible with

our probabilistic setting, and it would be interesting to extend their system with our

notion of probabilistic soundness.

As one of the reviewers pointed out, how our approach relates to stochastic logic

programming (SLP; see Muggleton 1996) is an interesting question. If we are able

to formulate our transformations of the dependency tree calculus as clauses of an

SLP, our method will fit very well into SLPs. The probability of preserving the

truth for each transformation would then become the probability assigned to the

corresponding clause. Possibly we could use the existing SLP machinery to replace

our heuristic search procedure to generate derivations by a more principled and

efficient method. We believe that this could be a promising direction for future

work.

6 Future work and conclusion

This paper introduces a probabilistic approach to textual entailment that is based on

a calculus on dependency parse trees. The unique property of our work is that we do

not assume soundness for our calculus; instead we only require that its derivations

preserve the truth of a statement (in our case of the statement of a dependency tree)

with a certain probability depending on the transformations used. This captures the

intuition we have about commonsense reasoning in which we sometimes (e.g. due

to limited information) can only draw conclusions which are probably correct.

For concreteness we described a heuristic method which generates derivations for

text/hypothesis pairs in such a calculus. Given a dataset of examples we explained

how the model parameters of the probabilistic calculus can be estimated and applied

to unseen data. Furthermore, we discussed the relationship of our approach to logistic

regression.

Finally, we showed that the approach works by applying it to datasets from the

PASCAL Challenge on Recognizing Textual Entailment. Even though our current

results suggest that right now our system might not be able to compete with the state-

of-the-art systems for textual entailment we see the potential that our architecture

provides a useful platform on which one can test and evolve different sets of trans-

formations on parse trees. Again, we note that such a set of transformations induces

a calculus that preserves truth only with a certain probability, which is an interesting

concept to follow up. Furthermore, the idea of a probabilistic calculus is not limited

to dependency trees but could equally well apply to other representations of text.

476 S. Harmeling

Besides working on more powerful and faithful transformations, our system might

be improved also simply by replacing our ad hoc solutions for the preprocessing and

sentence-splitting. We should also try different parsers and see how they compare for

our purposes. Since our approach is based on a probabilistic model, we could also try

to incorporate several optional parse trees (as a probabilistic parser might be able to

create) with their respective probabilities and create a system that uses probabilities

in a consistent way all the way from tagging/parsing to inferring entailment.

References

Adams, R. 2006. Textual entailment through extended lexical overlap. In R. Bar-Haim,

I. Dagan, B. Dolan, L. Ferro, D. Giampiccolo, B. Magnini and I. Szpektor (eds.), Proceedings

of the Second PASCAL Challenges Workshop on Recognising Textual Entailment, pp. 128–

133.

Bar-Haim, R., Dagan, I., Dolan, B., Ferro, L., Giampiccolo, D., Magnini, B., and Szpektor,

I. (eds.) 2006. Proceedings of the Second PASCAL Challenges Workshop on Recognising

Textual Entailment.

Bar-Haim, R., Dagan, I., Greental, I., and Shnarch, E. 2007a. Semantic Inference at the Lexical-

Syntactic Level. In Proceedings of the Twenty-Second Conference on Artificial Intelligence

(AAAI-07), pp. 871–876. The AAAI Press, Menlo Park, California, USA.

Bar-Haim, R., Dagan, I., Greental, I., Szpektor, I., and Friedman, M. 2007b. Semantic

inference at the lexical–syntactic level for textual entailment recognition. In D. Giampiccolo,

B. Magnini, I. Dagan, B. Dolan and P. Pantel (eds.), Proceedings of the ACL-PASCAL

Workshop on Textual Entailment and Paraphrasing, pp. 131–136.

Bird, S. 2005. NLTK-Lite: efficient scripting for natural language processing. In Fourth

International Conference on Natural Language Processing, pp. 1–8.

Dagan, I., Glickman, O., and Magnini, B. (eds.) 2005. Proceedings of the PASCAL Challenges

Workshop on Recognising Textual Entailment.

de Marneffe, M.-C., MacCartney, B., and Manning, C. D. 2006. Generating typed dependency

parses from phrase structure parses. In International Conference on Language Resources

and Evaluation (LREC).

Fellbaum, C. 1998. WordNet: An Electronic Lexical Database. The MIT Press, Cambridge,

MA, USA.

Giampiccolo, D., Magnini, B., Dagan, I., Dolan, B., and Pantel, P. (eds.) 2007. Proceedings of

the ACL-PASCAL Workshop on Textual Entailment and Paraphrasing.

Glickman, O., Dagan, I., and Koppel, M. 2005. A probabilistic classification approach for

lexical textual entailment. In Proceedings of the Twentieth National Conference on Artificial

Intelligence (AAAI-05), pp. 1050–1055. The AAAI Press, Menlo Park, California, USA,

2005.

Harmeling, S. 2007. An extensible probabilistic transformation-based approach to the third

Recognizing Textual Entailment Challenge. In D. Giampiccolo, B. Magnini, I. Dagan,

B. Dolan and P. Pantel (eds.), Proceedings of the ACL-PASCAL Workshop on Textual

Entailment and Paraphrasing, pp. 137–142.

Hickl, A., and Bensley, J. 2007. A discourse commitment-based framework for Recognizing

Textual Entailment. In D. Giampiccolo, B. Magnini, I. Dagan, B. Dolan and P. Pantel (eds.),

Proceedings of the ACL-PASCAL Workshop on Textual Entailment and Paraphrasing, pp.

171–176.

Iftene, A., and Balahur-Dobrescu, A. 2007. Hypothesis transformation and semantic variability

rules used in Recognizing Textual Entailment. In D. Giampiccolo, B. Magnini, I. Dagan,

B. Dolan and P. Pantel (eds.), Proceedings of the ACL-PASCAL Workshop on Textual

Entailment and Paraphrasing, pp. 125–130.

Inferring textual entailment with a probabilistically sound calculus 477

Klein, D., and Manning, C. D. 2003. Accurate unlexicalized parsing. In Proceedings of the

41st Meeting of the Association for Computational Linguistics, pp. 423–430.

Kouylekov, M., and Magnini, B. 2005. Recognizing Textual Entailment with tree edit distance

algorithms. In I. Dagan, O. Glickman and B. Magnini (eds.), Proceedings of the first

PASCAL Challenges Workshop on Recognising Textual Entailment, pp. 17–20.

Kouylekov, M. and Magnini, B. 2007. Tree edit distance for Recognizing Textual Entailment:

estimating the cost of insertion. In R. Bar-Haim, I. Dagan, B. Dolan, L. Ferro,

D. Giampiccolo, B. Magnini and I. Szpektor (eds.), Proceedings of the Second PASCAL

Challenges Workshop on Recognising Textual Entailment, pp. 68–73.

Muggleton, S. 1996. Stochastic logic programs. Advances in Inductive Logic Programming 32:

254–64.

Schölkopf, B. and Smola, A. J. 2001. Learning with Kernels: Support Vector Machines,

Regularization, Optimization, and Beyond. The MIT Press, Cambridge, MA, USA.

Tatu, M., Iles, B., Slavick, J., Novischi, A., and Moldovan, D. 2006 COGEX at the second

recognizing textual entailment challenge. In R. Bar-Haim, I. Dagan, B. Dolan, L. Ferro,

D. Giampiccolo, B. Magnini and I. Szpektor (eds.), Proceedings of the Second PASCAL

Challenges Workshop on Recognising Textual Entailment, pp. 104–109.

Tatu, M., and Moldovan, D. 2007 COGEX at RTE 3. In D. Giampiccolo, B. Magnini,

I. Dagan, B. Dolan and P. Pantel (eds.), Proceedings of the ACL-PASCAL Workshop on

Textual Entailment and Paraphrasing, pp. 22–27.

